еЛАБОРАТОРНА РОБОТА № 1 СЕРЕДОВИЩЕ РОЗРОБКИ ПРОГРАМ ДЛЯ МК AVR

Мета: навчитися використовувати для написання програм інтегроване середовище розробки AVR Studio та пакету ISIS Proteus.

1 Теоретичні відомості

1.1 Загальні відомості при роботі з AVR Studio

AVR Studio 4 – професійне інтегроване середовище розробки (Integrated Development Environment - IDE), призначене для написання і налагодження прикладних програм для мікроконтролерів AVR в середовищі Windows NT/XP та містить асемблер і симулятор.

Програмування в середовищі AVR Studio зазвичай виконується в такій послідовністі:

- створення проекту;
- написання програми;
- компіляція;
- симуляція.

Створення проекту

При запуску AVR Studio пропонується створити новий проект (New Project) або відкрити вже існуючий (Open).

Welcome to AVR Stud	lio 4	
1.55	New Project Open	
	Recent projects	Modified
	• D:\мои документы\\Студикам\Button\Button.aps	09-Apr-2012 11:24:53
	D:\мои документы\2221.aps	09-Apr-2012 10:56:35
	🐨 D:\мои документы\333.aps	01-Apr-2012 15:35:46
	🐨 D:\мои документы\22.aps	01-Apr-2012 15:03:09
	 D:\мои документы\111.aps 	01-Apr-2012 14:25:16
Ver 4.18.684 🗹 Show o	ialog at startup	
	<< Back Next >> Load	Cancel Help

Рисунок 1.1

Welcome to AVR Studi	o 4	
Schedio 4	Create new project Project type: Atmel AVR Assembler AVR GCC	Project name: lab_7 Create initial file Create folder Initial file: lab_7 .asm
	Location: D:\мои документы	
Ver 4.18.684	<< <u>B</u> ack <u>N</u> ext >>	Finish <u>C</u> ancel Help

Рисунок 1.2 – Створення нового проекту

У вікні тип проекту (Project Type) вибираємо асемблер (Atmel AVR Assembler), заповнюємо поля ім'я проекту (Project Name) і заголовний файл (Initial File). Натискаємо далі (Next) ...

Welcome to AVR Stud	io 4	
Sindilo 4	Select debug platform and device Debug platform: AVR Dragon AVR ONE! AVR Simulator AVR Simulator 2 ICE200 ICE40 ICE50 JTAG ICE JTAG ICE JTAGICE mkII Proteus VSM Viewer	Device: AT90PWM3B AT90PWM81 AT90S1200 AT90S2313 AT90S2323 AT90S2343 AT90S2443 AT90S4433 AT90S4434 AT90S4434 AT90S4515 AT90S8535
Ver 4.18.684	Open platfor	m options next time debug mode is entered

Рисунок 1.3 – Вибір симулятора та МК

У вікні платформа відладки (Debug Platform) вибираємо симулятор, а у вікні пристрій (Device) – відповідний мікроконтролер (в даному варіанті АТ90S8515). Натискаємо завершити (Finish) – на даному етапі проект створений. Після переходимо в головне вікно програми.

Рисунок 1.4 – Загальний вигляд вікна програми

Вікно розділене на 4 частини. У верхній частині знаходиться рядок меню і «плаваючі» панелі з кнопками. Трохи нижче ліворуч знаходяться вкладки Диспетчер проекту (Project), Перегляд вводу/виводу (I/O View), Інформація (Info), праворуч – Текст програми. Знизу знаходяться наступні вкладки: Конструкція (Build), Повідомлення (Message), Пошук в файлах (Find in Files), Контрольні точки (Breakpoints and Tracepoints).

У вікні Текст програми користувач створює програму.

Для першого знайомства можна взяти програму з Додатка 1.

Рисунок 1.5 – Написання тексу програми

При написанні програми, текстовий редактор середовища забезпечує під світку синтаксису – інструкції виділяються синім кольором, коментарі - зеленим, інше - чорним.

При написанні ПО слід не забувати періодично зберігати внесені в програму зміни.

Компіляція – процес перекладу тексту програми, написаної мовою програмування, в виконуваний модуль, що містить машинні команди конкретного процесора. Процес компіляції з мови асемблеру називається асемблюванням (утворення *.hex файлу).

Асемблювання – трансляція з мови асемблера в команди машинної мови.

🎬 🎒

Дані кнопки на верхній панелі запускають процес асемблювання. Кнопка зліва асемблює проект, справа асемблює і запускає на виконання.

Якщо при написанні тексту програми були допущені синтаксичні помилки, компіляція переривається і на вкладці Конструкція виводяться повідомлення про допущені помилки.

	D:\Button\Button.asm
Build	
 D:\Button\Button.asm(17): error: P0 D:\Button\Button.asm(17): error: sy Assembly failed, 3 errors, 0 warpin 	RTB: Unknown instruction or macro mtax error, unexpected ','
Build Message Find in Files Brea	kpoints and Tracepoints
	ATmega851

Рисунок 1.6 – Вкладка Конструкція при синтаксичних помилках

При вдалій компіляції на вкладці Конструкція показується звіт про проходження процесу асемблювання і таблиця використаних ресурсів.

Build								
AVRASM: Copyrig	AVRASM: AVR macro assembler 2.1.42 (build 1796 Sep 15 2009 10:48:36) Copyright (C) 1995-2009 ATMEL Corporation							
D:\Butt D:\Butt	D:\Button\Button.asm(4): Including file 'C:\Program Files\Atmel\AVR Tools\AvrAssembler2\Appnotes\m8515def.inc' D:\Button\Button.asm(32): No EEPROM data, deleting D:\Button\Button.eep							
ATnega8 Segment	515 memory Begin	y use summ End	ary [by: Code	tes]: Data	Used	Size	Use%	
[.cseg]	0x000000	0x00001e	30	 0	30	8192	0.4%	-
[.dseg]	0x000060	0x000060	0	0	0	512	0.0%	
[.eseg]	0x000000	0x000000	0	0	0	512	0.0%	
🍨 Assembl	Assembly complete, 0 errors. 0 warnings							
🔳 Build 🧕	Message	😽 Find in File	es 🏹 Bre	akpoints	and Trace	points		
								ATmena8515

Рисунок 1.7 – Вкладка Конструкція при вдалій компіляції

Після вдалого асемблювання можна переходити до фази симуляції.

Контрольна точка – інструкція в програмі, дійшовши до якої виконання програми призупиниться. Встановлена контрольна точка відзначається у редакторі червоним кружком.

Рисунок 1.8 – Контрольна точка

Симуляція – моделювання процесу виконання програми мікроконтролером на персональному комп'ютері. Являється одним із режимів налагодження (Debugging).

Налагодження – етап комп'ютерного розв'язання задачі, при якому відбувається усунення явних помилок у програмі. Часто проводиться з використанням спеціальних програмних засобів - відладчиків.

Лля управління режимом налагодження призначені наступні кнопки.

- Запустити відладку (симуляцію).
- Зупинити відладку .
- **Запустити програму на виконання**.
- Пауза у виконанні програми.
- Показати виконувану інструкцію.
- Перезапустити програму.
- Крок вперед із заходом в підпрограми.
- Крок вперед без заходу в підпрограми.
- Перейти до останньої інструкції програми (підпрограми).
- Виконати програму до місця вказаного курсором.
- Автоматичне покрокове виконання програми.
 - Встановити / зняти контрольну точку.
 - Видалити всі контрольні точки.

Інструкція, яка буде виконуватися наступною, позначається жовтою стрілкою.

Інформація про регістри введення/виведення, процесор і регістри загального призначення розташована і розподілена по групах в вкладці.

Після успішної компіляції проект можна завантажувати у контролер, в тому числі у пакеті Proteus.

Перегляд вводу/виводу.

Рисунок 1.9 – Вкладка вводу/виводу

1.2 Загальні відомості при роботі з Proteus

Proteus – це комерційний пакет програм класу САПР, що об'єднує у собі дві основні програми: ISIS – засіб розробки та налагодження в режимі реального часу електронних схем та ARES – засіб розробки друкованих плат.

Розробником пакету Proteus є фірма Labcenter Electronics Великобританія.

[http://radio-hobby.org/uploads/journal/RYB/2013/RYB_2013_24.pdf]

Proteus підтримує симуляцію МК: PIC, 8051, AVR, HC11, ARM7/LPC2000 та інших розповсюджених процесорів. Працює з більшістю компіляторів та асемблерів.

Proteus дозволяє достовірно моделювати та налагоджувати складні пристрої, в яких може міститися декілька МК.

Proteus містить бібліотеку велику електронних компонентів. відсутні, Компоненти, ЩО можна створити. Якщо компонент не програмуємий, то необхідно на сайті виробника скачати його SPICE модель та додати в прийнятний корпус.

Proteus має можливість підключитися до реальномго USB та COM порту комп'ютера. [http://eldigi.ru/articles/proteus]

Інтерфейс програми ISIS з поясненнями представлений на рис.1.10

Рисунок 1.10 – Інтрефейс ISIS Proteus

2 Порядок виконання роботи

2.1 Згідно Таблиці 1.1 та Додатку 1 набрати тексти програм у AVR Studio. Програма повинна виконувати задану операцію згідно завдання над вдома числами. Сформувати необхідні значення операндів на входах портів A та B. Та зчитати виведенні на індикатори значення з портів C та D.

2.2 У пакеті ISIS Proteus згідно Додатку 2 створити схему та вибрати відповідних контролер (АТ90S8515) і зашити у нього утворений **hex** файл і переконатись і працездатності програми.

2.3 Набрану програму скомпілювати і налагодити, провівши покрокове виконання програми та відстежити, як змінюється вміст відповідних регістрів.

2.4 Виправити помилки, якщо вони є.

Таблиця 1.1 – Вхідні дані

PortA	PortB	Операція 1	Операція 2
1	2	+	mul
2	4	-	mul
3	6	+	xor
4	8	-	or
5	10	+	or
6	12	-	xor
7	14	+	and
8	16	-	and
9	18	mul	+
10	20	xor	-
11	22	or	+
12	24	or	-
13	26	xor	+
14	28	and	-
15	30	and	+

3 Зміст звіту

- 3.1 Назва та мета роботи.
- 3.2 Схема в ISIS Proteus.
- 3.3 Текст програми.
- 3.4 Результат виконання програми.
- 3.5 Висновки по роботі.

4 Контрольні запитання

- 4.1 Що таке AVR Studio?
- 4.2 Яка послідовність дій по створенню проекту та відпрацюванню помилок
- у середовищі AVR Studio?
- 4.3 Що таке компіляція?
- 4.4Що таке асемблювання?
- 4.5Що таке симуляція?
- 4.6 Що таке налагодження?
- 4.7 Що являє собою Proteus?
- 4.8 Які дві основні програми об'єднує Proteus?
- 4.9 Які основні можливості пакету програм Ptoteus?

Додаток 1

C:\Project	s\Thermo\Thermo.asm
; regist .equ .equ .equ .equ .equ .equ .equ .equ	Porta = \$3F PORTA = \$1B DDRA = \$1A PINA = \$19 PORTB = \$18 DDRB = \$17 PINB = \$16 PORTC = \$15 DDRC = \$14 PINC = \$13 PORTD = \$12 DDRD = \$11 PIND = \$10
; Initia out out out	R16; R16 <- #0FF PORTA, R16; R16 <- #0FF PORTB, R16; R16 <- #0FF DDRC, R16 ; R16 <- #0FF DDRD, R16 ; R16 <- #0FF
; Main p MO: in ;zavdany eor RO,	RO, PINA ; RO <- PINA R1, PINB ; RO <- PINB Ma 3 R1
out	PORTC, R0 : PORTC <- PINA XOR PORTD, R1 : PORTD <- PINB
rjap	MO ; PC <- MO
;swap R0)

Додаток 2

